15.1 The Respiratory System

- The primary function of the respiratory system is to allow oxygen from the air to enter the blood and carbon dioxide from the blood to exit into the air.

- Ventilation, or breathing, has two parts.
 - Inspiration, or inhaling, conducts air toward the lungs.
 - Expiration, or exhaling, conducts air away from the lungs.

15.1 The Respiratory System

- The respiratory system and the cardiovascular system work together to accomplish
 1. Exchange of gases (O₂ and CO₂) between air and the blood (external respiration).
 2. Transport of gases to and from the lungs and the tissues.
 3. Exchange of gases (O₂ and CO₂) between blood and tissue fluid (internal respiration).
The Respiratory Tract

- As air moves in along the airways, it is:
 - Cleansed by nostril hair and cilia and mucus along nasal cavities and trachea;
 - Warmed by the heat given off by the blood vessels lying close to the surface of airway lining;
 - Moistened by the wet surfaces of the air passages.
- As air moves out, it cools and loses moisture.
The Nose

- **The Nose**
 - Part of upper respiratory tract
 - Includes nasal cavities, pharynx, and larynx
 - Air enters through nostrils (external openings)
 - Contains two nasal cavities
 - Warms and moistens air during inhalation
 - Contains odor receptors
 - Tear glands drain into nasal cavity
 - Separated from mouth by **hard** and **soft palate**

The Pharynx

- **Pharynx** connects nasal and oral cavities to larynx
 - Three parts
 - **Nasopharynx** – where the nasal cavities open posterior to soft palate
 - **Oropharynx** – where the mouth opens
 - **Laryngopharynx** – opens into the larynx
 - **Uvula** – soft extension of soft palate projects into oropharynx
 - **Tonsils** – a protective ring
 - Lymphatic tissue that protects against inhaled microbes
The Trachea

- **Trachea (windpipe)**
 - Tube connecting larynx to primary bronchi
 - Held open by C-shaped cartilage rings
 - Cilia sweep mucus toward the pharynx
 - Smoking can destroy cilia

- **Larynx** — cartilaginous structure
 - Passageway for air between pharynx and trachea
- **Vocal cords**
 - Folds of mucosa that vibrate to make sounds
 - **Glottis** - opening between folds
 - **Epiglottis** — Flap preventing food from entering the respiratory tract
The Bronchial Tree

- Trachea divides into right and left primary **bronchi**
 - Lead into right and left lungs
 - Branch to secondary bronchi
 - Eventually lead to **bronchioles**
 - As airways divide and subdivide, the walls become thinner
 - The small rings of cartilage are no longer present
 - Each bronchiole leads into sac called **alveoli**

The Lungs

- The **lungs** are paired, cone-shaped organs.
 - Occupy thoracic cavity
 - **Diaphragm** separates it from abdominal cavity
 - Right lung has 3 lobes
 - Left lung has 2 lobes
 - Allows room for heart
 - Each lobe subdivided into lobules
 - Each lobule has a bronchiole serving many alveoli
The Lungs

- Each lung is covered by very thin serous membranes called **pleura**.
- Another pleura covers the internal chest wall and diaphragm.
- Both pleura produce lubricating serous fluid that helps the pleurae slide freely against each other during inspiration and expiration.
- Surface tension holds the two pleura layers together when the lungs recoil in expiration.

The Lungs

- The alveoli are made up of simple squamous epithelium surrounded by blood capillaries.
 - Gas exchange occurs between the air in the alveolus and the blood in the capillaries.
 - Oxygen diffuses across the walls into blood.
 - Carbon dioxide diffuses into alveoli.
 - Alveoli must stay open to receive air.
 - **Pulmonary surfactant** helps prevent them from closing.
 - **Infant respiratory distress syndrome** – premature infants lack surfactant.
15.2 Mechanisms of Breathing

- During ventilation (breathing), free air flow is vitally important.
- Medical professionals use a device called **spirometer** to record volume.
 - The volume of air exchanged during both normal and deep breathing can be measured.
 - Breathing patterns are a useful way of understanding normal inspiration and expiration.
15.2 Mechanisms of Breathing

- **Spirometer**
 - Records the volume of air exchanged during both normal and deep breathing
- **Spirogram**
 - Shows the measurements recorded when a person breathes as directed by a technician

Figure 15.6

Respiratory Volumes

- **Tidal volume**
 - Amount of air inhaled and exhaled with each breath at rest
 - Normally is about 500 ml
- **Vital capacity**
 - Maximum volume moved in and out in a breath
 - Illness can affect vital capacity
Respiratory Volumes

- **Inspiratory reserve volume**
 - Forced inhalation of air moved in above tidal volume
 - Roughly an additional 3.0 liters from tidal volume
- **Expiratory reserve volume**
 - Forced exhalation of air moved out beyond tidal volume
 - Roughly 1.5 liters additional to tidal volume
- These together = **vital capacity**
- All volumes depend on age, gender, physical conditioning

Respiratory Volumes

- During normal breathing, only about 70% of the tidal volume reaches the alveoli.
 - 30% remains in the airways
 - Even after deep exhalation air remains in the lungs
- **Residual volume**
 - Amount of air always remaining in lungs
 - Typically about 1000ml of air

Inspiration and Expiration

- **Understanding Ventilation**
 1. There is a continuous column of air from pharynx to alveoli.
 2. The lungs lie in the sealed-off thoracic cavity.
 - Rib cage forms top and sides
 - Intercostal muscles lie between the ribs
 - Diaphragm forms the floor
 3. The lungs adhere to the thoracic wall by way of the pleura.
Inspiration

- The active phase
 - Diaphragm contracts
 - Becomes flattened
 - Internal intercostals contract
 - Raises rib cage up and out
 - Volume of thoracic cavity increases
 - Air pressure inside alveoli lowers
 - Air rushes in due to negative pressure

Expiration

- The passive phase
 - Diaphragm and internal intercostals relax
 - Recoil returns them to original shape
 - Volume of thoracic cavity decreases
 - Air pressure inside alveoli increases
 - Air rushes out

Control of Breathing

- Normally, adults have resting breathing rate of 12 to 20 ventilations per minute.
- The respiratory center located in the medulla oblongata of the brain controls the ventilation rhythm.
- This center stimulates inspiration by sending signals to certain muscles.
- When the center temporarily stops, signals are not sent to the muscles.
Control of Breathing

- Inspiration begins when respiratory center sends out nerve impulses to the diaphragm and external intercostals, causing contraction.
- Expiration begins when respiratory center ceases to send out nerve impulses to diaphragm and external intercostals; relaxation occurs.
- The respiratory center is also influenced by chemical and neural input.

Control of Breathing

- **Chemical input** to respiratory center
 - Directly sensitive to the levels of CO₂ and H⁺
 - When levels rise, respiratory center increases rate and depth of breathing
 - Indirectly responsive to O₂
 - Chemoreceptors in the **carotid** and **aortic bodies** sensitive to oxygen levels in blood
 - When levels decrease, impulses are sent to respiratory center.
 - Respiratory center then increases rate and depth of breathing.
15.3 Gas Exchanges in the Body

- Respiration includes the exchange of gases in the lungs (external respiration) and the exchange of gases in the tissues (internal respiration).
- Most of the O₂ carried in the blood is attached to the iron-containing heme portion of the protein hemoglobin.

External Respiration

- Exchange of gas between air in alveoli and blood
 - Partial pressure refers to the amount of pressure each gas in a mixture exerts.
 - Symbolized by P_{CO_2} and P_{O_2}
 - Blood in pulmonary capillaries has a higher P_{CO_2} than atmospheric air.
 - CO_2 diffuses from blood into alveoli

External Respiration

- Most CO_2 is carried as bicarbonate ions (HCO_3^-).
- Carbonic anhydrase catalyzes the breakdown of carbonic acid (H_2CO_3).
External Respiration

- The pressure gradient for O\(_2\) is the reverse of CO\(_2\).
- P\(_{O2}\) is low in pulmonary capillaries and high in alveoli.
- O\(_2\) diffuses into blood.
- Hemoglobin picks up O\(_2\) and becomes oxyhemoglobin.

\[
\text{Hb} + \text{O}_2 \rightarrow \text{HbO}_2
\]

Internal Respiration

- Internal Respiration
 - Exchange of gas between systemic capillaries and tissues
 - Partial pressure of O\(_2\) is greater in capillaries than tissues
 - Oxyhemoglobin gives up O\(_2\) which diffuses out of the blood into tissues

\[
\text{HbO}_2 \rightarrow \text{Hb} + \text{O}_2
\]

Internal Respiration

- CO\(_2\) diffuses into the blood.
 - A small amount combines with hemoglobin.
- Most CO\(_2\) combines with H\(_2\)O.
- Carbonic anhydrase speeds up the reaction.
15.4 Disorders of the Respiratory System

- The respiratory tract is constantly exposed to the air in our environment and thus susceptible to:
 - Various infectious agents
 - Pollution
 - In some individuals, tobacco smoke
Disorders of the Upper Respiratory Tract

- Upper respiratory tract
 - Includes nasal cavities, the pharynx, and the larynx
 - Susceptible to a variety of viral and bacterial infections due to its air filtering function
 - Upper respiratory infections can also spread from these areas to the middle ear or the sinuses

The Common Cold

- Most are caused by relatively mild viruses
 - Most common are rhinoviruses
 - Symptoms include sneezing, runny nose, and mild fever
 - Last a few days to a week for individuals with a healthy immune system
 - Antibiotics are ineffective against viral infections
 - Medications may be use to treat symptoms

Pharyngitis, Tonsillitis, and Laryngitis

- **Pharyngitis**
 - Inflammation of the throat due to infection
 - *Streptococcus pyogenes* causes “strep throat”
 - Symptoms are sore throat, fever, and white patches
 - Treated by antibiotics
Pharyngitis, Tonsillitis, and Laryngitis

• **Tonsillitis**
 – Tonsils (lymphoid tissue) become inflamed and enlarged
 – Frequent inflammation can lead to surgical removal by tonsillectomy

• **Laryngitis**
 – Inflammation of the larynx
 – Causes hoarseness with difficulty in speaking
 • Benign polyps can develop on vocal cords, especially individuals that use them excessively.

Sinusitis

– Inflammation of the cranial sinuses within the facial skeleton that drain into the nasal cavities
– Develops when nasal congestion blocks sinus openings
– Symptoms include postnasal discharge, headache, and facial pain
– Up to 10% of upper respiratory infections are accompanied by sinusitis

Otitis Media

• Inflammation of the middle ear
 – Nasal infections spread to the ear by way of the auditory (eustachian) tubes.
 – Tympanostomy tubes are helpful in children with chronic otitis media.
Disorders of the Lower Respiratory Tract

- Several disorders of the lower respiratory tract cause problems by obstructing normal airflow.
- Causes
 - Foreign objects lodged in the trachea
 - Excessive mucus in bronchi or bronchioles
 - Conditions that tend to restrict normal elasticity

Disorders of the Trachea and Bronchi

- **Choking**
 - Obstruction of the trachea
 - Heimlich maneuver - a physical technique to expel blockage
 - Tracheotomy - insertion of a breathing tube into the trachea (tracheostomy)
 - Individuals whose larynx or trachea has been damaged or destroyed may require a permanent tracheostomy tube.

- **Acute bronchitis**
 - Inflammation of the primary and secondary bronchi
 - Usually preceded by a viral infection that leads to a secondary bacterial infection

- **Chronic bronchitis**
 - Airways are inflamed and filled with mucus
 - Bronchi have undergone degenerative change including the loss of cilia
 - Smoking is the most common cause
Disorders of the Trachea and Bronchi

• **Asthma**
 – A disease of the bronchi and bronchioles
 – Marked by wheezing, breathlessness
 • Sometimes coughing and expectoration of mucus
 – Triggered by specific irritants
 • Smooth muscle in bronchioles spasms
 – Incurable but can be treated with medicines

Diseases of the Lungs

• **Pneumonia**
 – Infection in which bronchi or alveoli fill with thick fluid
 – Symptoms include high fever, chest pain, and headache
 – Caused by bacteria, viruses, and other infectious agents

• **Pulmonary tuberculosis**
 – Caused by the bacterium *Mycobacterium tuberculosis*
 – Lung cells build a protective capsule (tubercle) around invading bacteria
 – If resistance is low, bacteria escape and spread
 – TB skin test – checks for exposure to *M. tuberculosis*

Diseases of the Lungs

• **Emphysema**
 – A chronic and incurable disease
 – Damages the walls of the alveoli
 – Reduces surface area for gas exchange
 – COPD usually associated with smoking

• **Cystic fibrosis (CF)**
 – Recessive genetic condition
 – Caused by defective protein needed for Cl- transport
 – Mucus in the lungs becomes very thick and sticky
 – Interferes with breathing
Diseases of the Lungs

- **Pulmonary fibrosis**
 - Fibrous connective tissue builds up in the lungs, causing a lack of elasticity.
 - Vital capacity is consequently reduced.

Acute Bronchitis
Airways are inflamed due to infection (acute) or due to an irritant (chronic). Coughing brings up mucus and pus.

Figure 15.12a

b. Asthma
Airways are inflamed due to irritation, and bronchioles constrict due to muscle spasms.

Figure 15.12b
c. **Pneumonia**
Alveoli fill with pus and fluid, making gas exchange difficult.

Figure 15.12c

d. **Pulmonary Tuberculosis**
Tubercles encapsulate bacteria, and elasticity of lungs is reduced.

Figure 15.12d

e. **Emphysema**
Alveoli burst and fuse into enlarged air spaces. Surface area for gas exchange is reduced.

Figure 15.12e
Diseases of the Lungs

- **Lung Cancer**
 - Leading cause of cancer death in men and women
 - 87% of cases associated with cigarette smoking
 - Series of progressive steps
 - Thickening of cells lining bronchi
 - Loss of cilia
 - Appearance of cells with atypical nuclei
 - Tumor formation – disordered cells with atypical nuclei
 - Metastasis – cancerous cells spread to other parts of the body
Normal Lung versus Cancerous Lung

Figure 15.13

a. Normal lung b. Lung cancer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.